
Fault-Tolerant Task Management and Load Re-distribution

on Massively Parallel Hypercube Systems

Ishfaq Ahmad
School of Computer and Information Science

Northeast Parallel Architectures Center, Syracuse University, Syracuse, NY 13244

Arif Ghafoor
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907

Abstract
In a massively parallel multicomputer system, consist-

ing of hundreds or thousands of processors, it is very likely
that some of its components (processors and links) will fail.
If such a system is dedicated to time-critical applications
with certain deadlines to meet, such failures cannot be toler-
ated. We present a scheme for managing real-time task allo-
cation and load re-distribution with fault-tolerance for hy-
percube systems. A set of processors, called fault-control
processors (FCPS), can be used for keeping the duplicate co-
pies of tasks and re–allocating tasks if the original proces-
sors of those tasks fail. Two-level task redundancy is used
by grouping the FCPS as primary and secondary for each
processor. The proposed scheme provides a high degree of
fault–tolerance since each FCP itself is monitored by other
FCPS. Assuming a failure-repair system environment, the
performance of the proposed strategy has been evaluated
and compared with a fault–free environment for 256-node
and 5 12–node hypercubes, through simulation experiments.
We also introduce a measure of goodness, successprobabil-

ity, which represents the probability of re-allocated tasks
meeting their deadlines despite the failure of processors. It
is shown that using the proposed scheme, a large percentage
of the re–scheduled tasks can still meet their deadlines. The
probability of a task being lost altogether, due to multiple
failures, has been shown to be extremely low.

1 Introduction
One of major challenges faced by the designers of large–

scale multicomputers is to incorporate fault–tolerance into
these systems. With thousands of processors, it is likely for
some of them to fail. Systems that can heal in the presence of
failed processors rather than halting are vital for supporting
real-time teraflops power [16]. In addition to failures, it is
also very likely that computing resources become unavail-
able for a variety of other reasons such as some processors
may have to be shut off or isolated from the rest of the system
for maintenance purpose or due to some other reasons.
Means must be provided to handle failures and unavailabil-
ity of processors so that the operation of the rest of thes ys-
tem remains uninterrupted and the performance is not ad-
versely affected.

In addition to reliability and fault–tolerance, time is con-
sidered to be a crucial resource to manage in critical applica-
tion since the occurrence of events, such as the execution of
tasks, must follow some timing constraints [7]. For real–

time environments, the performance of multicomputers
needs to be evaluated by successful execution of individual
tasks within certain time period, rather than the average sys-
tem behavior. Real-time environments are further classi-
fied as soft and hard. In a soft real-time environment, a task
is considered lost if it does not meet its deadline [6] whereas
in a hard real-time system, the failure to meet a deadline can
be catastrophic [14]. Deadlines of tasks are met by using
some dynamic task scheduling and load migration strategies
[14], [15], [17].

Dynamic task scheduling and load balancing is an im-
portant problem for both real-time and non red–time sys-
tems and considerable research has been done in this regard
[11, [21, [31, [111, [121, [15], [17]. The problem becomes
more complex in the presence of processors failures [2], [3].
The design of a large-scale multicomputer system for real–
time applications entails efficient means of resource shar-
ing such as load balancing on the computing nodes, to meet
timing constraints. Furthermore, there must be provisions
to redistribute the unfinished computational load horn the
failed processors to the operational processors and to redi-
rect new tasks arriving at the failed processors. These two
requirements entail a dynamic load re~istribution strategy.
The load re-distribution strategy needs to be carefully de-
signed since the r-injection of computational load from the
failed processors to the rest of the operational system can
make some processors unstable.

In this paper, we propose a fault–tolerant load re-dMri-
bution strategy for large-scale multicomputers such as hy-
percube systems using a partitioning scheme. Partitioning
of system with fault–tolerance is becoming more practical
approach for large systems due to their massive size& as has
also been suggested forthenew Connection MachineCM-5
[19]. The proposed scheme is general in the sense that it is
applicable to any decentralized scheduling scheme. Also
the proposed strategy is based upon a more realistic assump-
tion about the failure situations, than the one given in earlier
work [2]. In previous studies failure have been assumed to
be static in that a given number of processors are assumed to
fail simultaneously without any subsequent recovery or re-
pair. However, the static failure assumption does not hold
for real life systems where failures are generally randomly
occurring events. Furthermore, the failed components can
be diagnosed and repaired off–line and can be re-integrated
back into the system [10]. The second realistic assumption
made in this paper is that the incoming tasks to the failed
processors cannot simply be ignored. Due to red–time con-

750
1063-9535/92 $3.00 @ 1992 IEEE

straints, some means are needed to handle tasks arriving at
thefailedprocessors. In summary, theproposedst.mtegy has
the following objectives

c The main objective is to propose a fan&tolerant task

scheduling strategy with decentralized control which has
the flexibility of allowing the ruining system to continue to
be operational in spite of failures of processors. The failed
processors are assumed to be repaired subsequently.

● In order to provide fanlt=tolerance for both real-time

and non–rea-thne environments, a certain level of redun-
dancy is required in case the processors with redundant co-
pies also fail. In this paper, we assume two-level redundan-
cy, that is, two redundant copies of every task are kept in the
system.

. R&schtiuling of tasks should not cause instability in

the system and tasks should be re-dktributed to only those
processors which are lightly loaded.

. For a real-time environment re-schethding of tasks

should be quick and efficient so that most of the tasks, which
would have been lost otherwise, can still meet their dead-
lines, without affecting the underlyingnormaldeccntralized
load balancing algorithm.

● If some processors in the system are out of order, the

total load entering into the system should not decrease. The
newly arriving tasks at those processors should be r@l-
rected to the operational processors. This re-direction of
new load should also not cause any instability and excessive
performance degradation.

Load re-distribution with minimum impact on the nor-
mal load balancing can beachievedif theprocessorsrespon-
sible for re-allocation of backup tasks, which we will refer
to as Fault Control Processors (FCPS), have some partial
knowledge of the global state of the system. The selection of
FCPS is a crucial factor to the fault–tolerant performance of
the system, especially in terms of re-scheduling and reduc-
ing chances of missing deadlines. In acentralizedapproach,

a single FCP can manage redundant load for the whole sys-
tem. However, the failure of the FCP itself can eliminate
fault–tolerance capability, and therefore, this scheme is
highly vulnerable to failure. On theotherhand, ifafully dis-

tributed scheme is used where each node acts as an FCP, the
global knowledge of the system load has to be acquired by
each node which is a costly solution in terms of overhea~,
the generation of such overhead traffic can seriously affect
the system’s performance. If limited knowledge, such as
only the load of neighboring processors, is used, the scope of

re-allocation of a task to a suitable destination becomes
rather limited. Clearly, a semi+ikibuted scheme with a
fewernumberof FCPs, each having somepartialknowledge
of the global state of the system, would be an alternative.
Such a scheme is presented in this paper, which is based on

partition of thehypercube topology intomukiple symmetric
regions (spheres). Each sphere is a cluster of processors and
has a fault–tolerant control processor (FCP). Load re-dis-
tribution is carried out within individual spheres where the
FCP of each sphere acts as a centralized controller for its

own sphere. Each processor is assigned two types of FCPs
for storing two redundant copies of each task present at the
processor. FCPS with the fret-level redundancy will be

termed asprimary FCPS and the other as secotvzluy FCPS.
The performance of the proposed strategy has been eva-

luated and compared with no fault environmen~ through an
extensive and detailed simulation. We show that the per-
formance degradation due to failures is scalable to fault rate

and does not depend critically on system parameters. Also,
theprobabflity of a taskbeiig lost altogether due to multiple
failures has been shown to be extremely low.

2 System Partitioning and Assignment of
FCPS

In this section, we describe the selection of FCPS and
network partitioning forhypercube topologies. As shown in
[1], partitioning of the interconnection network into multi-
ple regions can be modeled as a problem that is NP-hard.

Our solution employs combinatorial structure Hadatnard
matrix, for partitioning the network into multiple spheres
such that each sphere contains an FCP at its center while
each processor is assigned a set of FCPs which are responsi-
ble for the following taslcx

(a) maintaining redundant (backup) copies of the tasks in the
network,

(b) monitoring failures in their spheres,
(c) in case of a failure, redistributing tasks of the failed pro-
cessor in indNidual spheres, and
(d) maintaining the load status of the processors in the
spheres.

For mainlining backups, the assignment of processors
to FCPS is independent of the physical dkances in the net-
work, which results in a rather simple rule of assignment.
On the other hand, for the above mentioned functionalities
(b), (c) and (d), we use spheres centered at FCPS, as dis-
cussed in Section 2.2. In this paper, we do not address the is-

sue of fault-diagnosis and failnre identification. We assume

the availability of some such scheme.
Let an n dimensional hypercube topology of a system be

represented by an undirected graph, Q. = < U, E >

where Uis the setof nodes and Eis the set of edges (commu-
nication links) joining the nodes. The nodes (processors)

am numbered as 0,1,2,..., (N-1) and each number is repre-
sented by a bhmry code. The length of binary code for n di-
mensional hypercube is n, which also represents the number
of edges (links) incident on each node. Z7teHamming Dis-

tance, HV, between two binary codewords,

x=(xl, x2, .. %) and y=(Y1,yz,yJ of some length n, is

defined as HXY = l{il Xi*yi,15isn]l

where x, y G [0,1]“
In other words, Hamming dktance between two codewords
is the number of different bh.s in codewords. Ann-cube con-
sists of 2“ nodes where two nodes with binary ccdewords x

and y are connected if the Hamming distance I-lw between

their codewords is 1.

751

A path in a Q. is a sequence of connected nodes and the

length of the shortest path between nodes i andj is called the

graphical distance and is represented as Lti. Let

k = A4ax[Lti I V i,j, O S i,j, $ N– 1] be the diameter of

the network. For Q., LV = % and k=n.

Let V bethenumber of processors which are at a graph-
ical distance i from a processor. This number is a constant

Vx = U and is called the i–th valency. Then for every pro-
cessor x in Q., the valency sequence is given

as, ~ = (~) fori=~, ~,2.. n.

Given a set of nodes, C, itsgraphicalcovering radiusrin

the graph Q. is defiied as: r = MWt=~Minj~dLti)). In a

hypercube topology, every processor has an exactly one dia-
metric processor, that is, the processor which is at distance k,

the diameter, Such a pair is called antipodalpair.

2.1 Partitioning Criterion

Let C be the desired set of FCPS and let the sphere as-
signed to a processor x c C be denoted by S’i(~), where i is

the radius of this sphere. The number of processors in Si(j)

is the total number of processors lying at graphical distances
Othrough i, from processor x. The number of processors at

the graphical dktance i is given by valency ~ , and the total

1$(-X)I = j $O~. The coveting radiussize of rhe sphere is

determines the range of load re-distribution used by the
FCPS. This range quantifies the graphical distance within

which a FCP assigns tasks of a failed processor to the pro-
cessors of its own sphere, where it is located at the center.
The details of the backup copies and scheduling algorithm
are described in Section 4. In order to characterize spheres
and to describe network partitioning, we need the following
definitions.

Intuitively, in a centdized scheme where a single pro-
cessor acts as an FCP, i must be equal to the diameter (k) of
the network. For our scheme, we are looking for a d –uni-

form set C, of FCPs, which is the maximal set of processors

in A, such that the graphical distance among the FCPS is at

least a and l$(X)l is constant Vx G C, where i is the cov-

ering radius of C. For symmetric partitioning, ad –uniform

set C of FCPS (for some 6 to be determined) is required

with identical and graphically symmetric spheres. The size,
ICI, depends on the selection of d . If ~ is large, the size of

ICI, is small but spheres are large. If ICI is reduced, the sphere
size increases and vice versa. In addition, a number of other
considerations for the provision of fault–tolerance are given
below:
(1) Since, in case of a failure, an FCPneeds to re-distribute

tasks of the failed processor to all the processors in the
sphere, which requires the FCP to maintain state informa-
tion of load of all the processors within the sphere (the next
section regarding load re-distribution), the diameter of the
sphere should be as small as possible.

t)oi):ti410. o.#’ 11111111

(t Oolol:l.1” kllvloofl

Oo””loilltl:” ll#lo#ol.

Olbill.il. g 101 Otto. f,l”’

Do 1 i i“G.ti.i - 1. IGOOIIO

olIlo#”lo ‘Ioooklo”l

01100101” 1001101 ””0”

OIDaioll “10110100

M M=

Figure 1: Hadamard Ma&ix in O-1 notation and its
complement matrix serving as the binary addresses of
primary and secondary FCPS, respectively for Q8.

000000 ”000 Illllill”l

oDool(lll~ 111-t olocto

GO 01011 ID. 111010001

001011100 110100-011

#o Glllool -lllt30t)ll#

Doll IGol# -116001191

00 II QOIQ”I
116011010

001601011 I:IOIIQIOO

M Mc

Figure 2: An extended Hadamard Matrix and its
complement matrix serving as the binary addresses
of primary and secondary FCPS, respectively fo~g.

(2) Since an FCP (say, x) needs to send/receive I$(x)l mes-

sages for scheduling of failed-processor tasks within the
sphere, the size of the sphere needs to be small because.

For an arbitrary graph, for a given value of d >2, find-

ing a uniform set C is an NP–hard problem. Determining the
minimum sphere size is also NF-hard [8], [18]. Our solution
to select the set C in these networks uses a combinatorial
structure called HadamardMatrix which consists of ~ 1 en-

tries [1]. A j by j square Hadamard matrix M when multi-

plied with its transpose yields ajZmatrix, where lis the iden-

tity matrix. The complementary Haubnurdmutri& ¬ed
as w, is obtained by multiplying all the entries ofMby–1.

Replacing 1 by O,and-1 by 1, results in a matrix is with O-1
notation, and as denoted as M. In Figure 1 a g x g Hada-

mard matrix and its complement are shown. Hadarnmd ma-
trix of order n exists if n is 1,2 or a multiple of 4.

13L

The set C of FCPS for hypercube is selected from the
code generated by taking combinations of the rows of Hada-
mard matrix M and its complement Mc. The set C is also

called Hadamard code. Specifically, for Q8, (n being mul-
tiple of 4), we take the matrices M and MC of Figure 1.

When n= 8, ICI=2n. The set C for other values of n can be
obtained using some rules [1]. The summary of rules is as
follows. If n mode 4 = 1, we start with the set C obtained
from Hadamard matrices M and MC of size n (Figure 1).

The modified set C for the network under consideration can
be generated by appending an all O’s and an all 1’s column,
toM and MC respectively. If n mod4 = 2, then the set C is

obtained in the same way as the previous case, except we ap-
pend two columns Oand 1 to M and 1 and Oto MC. Howev-

er, the all O’s row in M is augmented with bits 00 instead of
bits 01. Similarly, the all 1’s row in Mc is augmented with

bits 11. For the case of n mod 4=3, the set Cconsists of the
rows of the truncated matrices M and MC in O-1 notation.

The truncated matrices (in O-1 notation) are generated by
discarding the all O’s row and column.

2.2 FCP Assignment Rule

Once the set of FCPs in Q. is known, the rule for the as-

signment of processors to FCPS requires identifying two
types of FCPs, the primary and the secondary FCPS, in order
to provide two-level fault–tolerance. Such an assignment is
as follows:

The FCPS having the left most bit O serve as primary
FCPS for those processors which have also leftmost bit as O.
These FCPS serve as secondary FCPS for the rest of the pro-
cessors in the network. Similarly, the FCPS having the left
most bit as 1 serve as primary FCPS for those processors
which have also left most blt as 1 and serve as secondary
FCPS for the rest of the processors.

We can notice that tiis assignment of FCPS to proces-
sors is symmetric in the sense that each processor interacts
with the same number of primary and secondary FCPS.
Also, each FCP manages the same number of processors in
terms of providing backup for fault–tolerance and re-distri-
buting the load, if required.

2.3 Processors for Load Re-Distribution

As mentioned earlier, FCPS maintain backups and load
status for re-distributing the load to some processors within
certain regions in the network, known as spheres. The
sphere of an FCP consists of all the processors which are
within a distance r from an FCP, where r is the covering ra-
dius of C. The number of processors in the sphere, SAX), is

the total nmnberof processors lying at graphical distances O
through r, from processor. Since the number of processors
at the graphical distance i is given by valency V, the total

size of the sphere is given as IS,(X)I = ~ V .

As mentioned above, the determinaf!i~qf this covering
radius is a non-trivial problem. It can be noticed that the
processors in one sphere can also be shared by other spheres,
depending upon the covering radius r and the graphical dk-
tance among FCPS. However, the set C provides the maxi-

mal kJ2 (radius)–urzi~orrn set for Q. [1]. There are various

other advantages of using Hadamard code [1]. Moreover, it
is easy to generate a truncated Hadamard matrix (the one
without all 1‘s column) using Symmetric Balanced Incom-
plete Block Design (SBIBD) [5]. The generator codes, for
different values of n–l, can be found using the difference set
approach [5]. The rest of the blocks (which corresponds to
all the elements of the set C, besides codewords with all O’s
and all l’s) can be generated by taking n-l cyclic shifts of
such a generator codeword. Table 1 illustrates the generator
codewords for various values of n–l, which can be used for
various Q.’s. For Qs, the set C can be produced by taking 6

cyclic shifts of code 0010111 (shown in Table 1) and then by
appending all O’s row and column to that block [1]. There-
sultant block is the same as shown earlier in Figure 1 where
each row of the matrix represents the binary address of the
16 FCPS.

The set consisting of codewords as given in Figure 1,
can also be used to generate the set C for the Q9 network by

appending an all O’s and all 1‘s column (say at extreme left
position), of matrix M and MC, respectively, as described

for case (a). This set is shown in Figure 2. Also, the same set
can be used to generate the set C for Qlo, as described in the

procedure of case(b). The set Cfor other Qn’s can be gener-

ated by the methods described above.
The topological characteristics and partitioned stric-

tures for QT, QB, Qg and QIO networks are summarized in

Table II giving the number of processors N, the degree n of

each processor, tbeminimum distanced between FCPS, the

cardlnality of the set C, the covering radius r, valencies

~ and the size of sphere IS,(X) 1,for each network.

3 Failure and Repair Model

As mentioned earlier, failures of components in real life

systems are generally random. Also, the failed components,

once diagnosed and repaired off–line, can be integrated
back into the system. Typically, a processor mnains rdive
most of the time and when it fails, it can be repaired quickly

and can become operational. For our study, we assume only
the failure of processors in the system. Accordingly, we
consider the well known failure/repair model of multipro-
cessor systems where the availability times as well as the re-
pair times of the processor are assumed to be independent
exponential random variables with mtes y andpl?, respec-

tively. Generally, the ratio of Y/#R is assumed to b very
small. Since the number of processors (N) in the system is
fixed and it has finite population, the cumulative failure and
repair rates become state dependent [4]. Accordhigly, the
Markov model showing the failure and repair processes is

depicted in Figure 3. The state of the model represents the
number of processors (P) currently operational. At a give
time, every operational processor is equally probable to fail,
Obviously, there can be more than one processor in the fail-
ure mode. The state dependent rate of the failure and repair
processes are also shown in Figure 2.

753

4 Task Re-Allocation Mechanism

In this section, we present the details of the proposed
scheme. For this purpose, we describe the system model, the
loadbalancing andloadre+iistribution algorithms, and then
the associated information collection and backup mecha-
nisms.

4.1 Assumptions and Characteristics
of the System

The system consists of Nprocessors where each proces-
sor is subjected to arrival of tasks. Task scheduling and load
balancing are assumed to be completely decentralized, with
a distributed scheduling algorithm rnnning on every proces-

sor. The tasks arrive at a processor with rate k tasks/time-
unit, which is identical for all the processors. The execution
time of a task is assumed to be known. In addition, asso-
ciated with each task is a deadline. When a task arrives at a
processor, the scheduler of that processor tries to guarantee
that the task meet it deadline. If this deadline can be met lo-
cally, the task is scheduled into the local execution queue
which is served on the FCFS principle. If a task cannot meet
its deadline locally, it is transferred to another processor,
The selection of a remote processor can be done in various
ways [13], [14]. However, in this study, we assume that the
local scheduler interacts with its immediate neighbors only
and gathers their load status. The load status in this case con-
sists of the cumulative untlnished work load which in turn is
the sum of the execution times of the tasks waiting in the
processor’s execution queue plus the remaining execution
time of the task which is currently being executed. If a task
is to be transferred to another processor, such transfer takes
certain amount of time. A task needs to wait in the commu-
nication queue of the link until a prior task completes its mi-

gration on that link. Since the communication time also
counts towards the task’s waiting time, the local processor,
while making the scheduling decision, also takes into ac-
count the communication penalty. The deadline of a task,
therefore, consists of its execution time plus the average
communication plus some marginal value (D) which de-
pends on the application and is assumed to be supplied by
the user.

4.2 Task Replication and Backups at FCPS

In order to provide two level fault–tolerance, the repli-
cated copies of every task are kept as backups on primary
and secondary FCPS. The backup queue of a processor is
further distributed in a round–robin fashion, f~st to all the
primary FCPS and then again to all the secondary FCPS.
Specifically, whenever a task is scheduled at a processor, its
copy is sent to the one of the primary FCPS as well as to the
associated secondary FCP. The copy of the next task is sent
to the next primary FCP present in the round–robin list as
well as to the associated secondary FCP. An FCP, therefore,
needs to keep backup queues for those N/2 processors for
which it acts as primary FCP. It also maintains backup
queues for the rest of the N,L?processors for which it serves
as their secondary FCP. It is worth mentioning that in order
to provide two level redundancy, there have to be 2Nredun-

dant copies of Nprocessor queues in the whole system. It is
also possible that, at any given time, an FCP(S) may be
faulty. In that case, the copy of the task is sent to next avail-
ableFCP in the round-robin list. In summary, the following
task duplication algorithm is executed at each processoc

Next FCP = (Next FCP+ 1) mod (Numof FCPS)
While (Next FCP is faulty)
Do
Next FCP= (Next FCP+ 1) mod (Numof FCPS)
End Do
Send copy of the task to Next FCP
If (the Secondary FCP is not faulty)
Send the copy of the task to the Secondary FCP

Figure 4 shows two processors 00tXUWOand 11111111
with sixteen FCPS in Q8. The dotted circles around theFCPs
indicate their respective spheres. The identification of these
spheres can be found by using the discussion in section 2.3.
In this case, thetopeight FCPs in the figure corresponding to
the binary codewords of matrix M represent the primary
FCPS for the processor WOOOOOO,and the eight lower
binary codes corresponding to MC represent secondary

FCPS for that processor. On the other hand,

4.3 Load Re-distribution under Failures

When a processor fails, each primary FCPre–schedules
the tasks (if it has any any) in its backup queue for the failed
processor. Due to real-time constraints, each FCP tries to
make sure that the backup tasks still meet their deadlines.
An FCPaccomplishes this by scheduling each of the backup
tasks to the most lightly loaded processors within its sphere.
The availability of processors within its sphere provides an
FCP with abroader view of the state of the system which en-
ables it to re-distribute the backup load by making better
choices in selecting processors. As a result, the backup tasks
may still meet their deadlines despite the failure of their
original processors. Since the backup queue of the failed
processor is itself dktributcd among multiple FCPS, each
FCP needs to schedule a portion of the tasks. The potential
benefits offe~d by this load re-distribution strategy are
summarized below:

● The backup queues of processors are themselves load bal-

anced among the FCPS.

. In the cme of failures, FCps are able to sel~t ~st candi-

date processors within their respective spheres.

● All the backup tasks can be concurrently re–scheduled in
multiple spheres.

● The likelihood of re-allocating tasks to the best possible

processors across the whole system is very high since the
FCPS are maximally spread in the network.

● Due to the round–robin distribution of tasks in backup
queues, the danger of instability due to bulk arrivals at a par-
ticularprocessor or in aparticutar sphere is greatly reduced,

● From a task’s perspective, the combination of its original

processor and both FCPS is a unique trio. As a result, the
likelihood that this unique trio will fail is low.

7.54

PY (P-I) y

P P-1

(N-(P-l))pR
~ B:Z::$&

(N-(P-2))PR

k.
processor

Figure 3: Markov model for failure Uoogoauo
and repair processes. / -..

#
mix

—+
.--/~,.. -,, _

Table 1: Generator codes for different lengths
----,

~ng~
WL1

Generator Codewords Topologies
-,-

-_

7 0010111 Q7, Qs, Q9. QIO

~ &

,

w

.> —-.--
&uma. -----

11 10111000101 QII. Q12, Q13, Q14 ‘1 /-.-r=J%Yh
.

15 111101011001000 Q15, QM Q17. QNI ,“ - *;l;w; --

19 1001111010100001101 Q19, Q820 Q21, Q2 , -’>> _ “]
.----, ‘

c

d:

>-—- -—-’<- ---<
,-

Table II: The characteristics of hypercube
. \;-- b

+J-1J-1I 10[la
networks of various sizes. , =- —-- ,

etwork N n I
dFCPsr~~ G I S,(x)l

IQ, 1128171411411181-I-191

IQ* 1256181411612181281-!371

Q9 512 9 5 16 2 9 36 - 46

0,,-, 1024 10 5 16 3 10 45 120 176

Like any fault-tolerant strategy, the proposed strategy
also needs to pay some penalties. However, simulation re-
sults shown in the later sections indicate that the performa-
nce degradation is scalable to the fault occurrence rate and
the proposed strategy is adaptive to a wide range of system
parameters. The migration of a task from an FCP to a pro-
cessor within its sphere incurs some communication delay.
In addition, we assume that each task is started from the be-
ginning. Nevertheless, this assumption is justified since the
issue of task recovery androll-back incnr extra overhead. In
addition these issues are not within the scope of this paper
and they need to be dealt separately. After re-distributing
the load of the faulty processor, ail backup queue are de-
leted. At the same time, the primary FCP informs the corre-
sponding secondary FCP to delete its backup queues for the
failed processor. The processor receiving the re-scheduled
task treats the backup tasks as a newly arrived task. The pro-
cessor also sends the backup copy of the re-scheduled task
to the FCP. However, there-scheduled tasks are not allowed
to make any further migrations. In spite of two level redun-
dancy, a task can still be lost ifi

e Both primary and secondary FCPS of the failed processor
have also failed.

@The failed processor is itself an FCP and its secondary

/ ‘ - &*i,,o -/2Jf--7-
,.

--- ./

\ . . .
--

.—_.

lr@
l!?xxmo

\\\---- .’–l.–-–--+-----

——..
.Wn mm

, . ,
‘---- ‘----

FCPS
FCPS

Figure 4 Task replication at FCPS assigned to

processor OOWOOOOand 11111111.

FCP has also failed.

● The failed processor is also an FCP and no task backup at

the secondary level could be made because the secondary
FCP was also faulty at the time the task was scheduled.

However, these events are of very low probability. Even
when one of these events does happen, not all but only a frac-
tion of the backup queue of a processor will be lost. It can be
noticed that this percentage is of the order of ~(Mz). The

probability of lost tasks as a result of these events is pres-
ented in the next section that proves these claims.

5 Evaluation of the Proposed Fault-Tolerant
Strategy

In this section, simulation results fortheproposedsrrate-
gy are presented, for the Q, and Qg networks. The task ar-

rival process for this study been modeled as a Poisson pro-

cess with average arrival rate of k tasks/unit-time which is
identical for all processors. The execution and migration
times of tasks have been assumed to be exponentially dis-
tributed with a mean of l/p~ time-units/task and I/pc ti-
me-unitshsk, respectively, The task deadline has been
computed by generating a mndom number from a uniform
distribution with an average of D time-units. The processor
failure and repair rates are also assumed to be exponentially

755

dMributed with a mean of I/y time-units/processor and

l/p~ time-units/processor, respectively. Failure and repair
rates are independent with respect to the rest of the system
parameters. All results are presented with 95 percent confi-
dence interval, with the size of the interval varying up to plus
or minus 5 percent of the sample mean. The first perform-
ance measure is the missing probability, defined as the prob-
ability that a task does not finish its execution within its spe-
citled deadline [14]. In our study, the impacts of average
task deadline (D) and three important system pammeters,
including the frequency of processor failures (y), system

load @/#z) and task migration rate @.1~),on deadline miss-

ing probability are evaluated. Since y and Amlone doe not
present a clear view of the number of faulty processors at
any given time because of the continuous failure and repair
processes, we donotpresent ourresuks in terms of these two

parameters. Rather, the results presented in the next section

0.025

0.020

$

50.015
0
&

$o.o1o
.-
Z

0.005

0

are described with respect to the average number of faulty
processors. In other words, for given values of y and Pzt

the steady-state value of average number of faulty proces-
sors in the system becomes fixed which is given by

Ny/(y +PR). In simulation, we have used different values

of y and have kept PR freed as 0.05.

5.1 Impact of Deadline and Frequency of
Failures

The performance of the underlying decentralized sched-
uling clearly depends on the specified deadlines of tasks.
Recall that the deadline of a task in simulation is computed
by adding atask’s execution time to its a.ssociatedvalue ofll
and l/pC. Since D is a uniformly distributed random vari-

able, the minimum value of D is Owhile the maximum value
is 2 times the average value. Whh tight deadlines (a low val-
ue of D), more tasks are likely to miss their deadlines where-

0.025

■D=l.O ❑ D=3.O

0.020 ❑ r). ?o n~ =4.0

0.015

0.010

0.005

(1
048121620242832 3640

Faulty Processors

Figure 5: Deadline missing probability versus
average number of faulty processors at various
values of D for the Qs network.

0.028 ■ Failed PEs = O t3Fded PEa“ S=24 x

❑ Failed PEs = 12 ❑ Failed PEs = 48
AO.024

0.3 0.4 0.5 0.6 0.7 0.8

Load Per Processor l/pE

Figure 7: The effects of system load and fault rate
on the deadline missing probability for the Q8network.

48 12 16 20 24 28 32 36 40

Faulty Processors

Figure 6 Deadline missing probability versus
average number of faulty processors at various
values of D for the Q9 network.

0.028 ■ Failed PEs = O B Failed PEs = 24

❑ Failed PEs = 12 ❑ Failed PEs = 48
0.024

$30.008

0.004

0
0.3 0.4 0.5 0.6 0.7 0.8

Load Per Processor l~p~

Figure 8: The effects of system load and fault rate
on the deadline missing probability for the Qsnetwork.

756

as loose deadlines (a higher value of D) imply that more
tasks will meet their deadlines, even when the system is
fault–free. The occurrence of failures further degrades the
deadline missing probability. The frequency of failures af-
fects the amount of load which is re-injected back into the
system. Recall that in the proposed strategy, the load sub-
mitted to the faulty processors, while they are under ~pair,
is not rejected; rather, new tasks at the faulty processor are
assigned to primary FCPS. Therefore, in addition to load re–
dktribution, FCPS are also subjected to some addh,ional
load. The results presented in this section show the effects
of task deadlines and processor failure frequencies.

The results indicating the deadline missing probability

are shown in Figure 5 and Figure 6, for QS and Q~, respec-

tively, Four average values of D, 1.0,2 .0,3.0 and 4.0 have
been selected while the number of faulty processor has been
varied from 4 to 40. The non–failure case (faulty processors
equal to O) is also included for comparison. The task arrival
rate per processor (y) is 0.7, and communication rate (#c)

is set to be 20 tasks/time-unit. We notice that if the average
number of faulty processors increases, the missing probabil-
ity also increases because not only the tasks (if any) waiting
in the execution queues of the failed processors have to be
re-scheduledbut also the tasks being executed at the time of
failure have to be aborted and re-scheduled. These results
indicate that the proposed strategy can sustain negligible
degradation in performance for different combinations ofD
and y. For example, in the case of Qa with D equat to 1 as
shown in Figure 5, the difference in the missing probability
at no-failure case and 18 faulty processors case is 0.017.
These results are encouraging, given that 40 of the 256 pro-
cessors are on the average out of order while their backup
tasks as well as new tasks are also being accommodated.
When D is equal to 1, this difference 0.036. This indicates

that the proposed strategy is able to tolerate failures under
both strict (D= 1) and relaxed (D = 4) deadlines.

The result for Qg are more encouraging as can be not-

iced from Figure 6 which indicates that although the missing
probabilities for the no-failure case are ahnost the same as
those of Qs, these probabilities are considerably less for the

failure conditions. This is due to the large size of Qg which

has a sphere size of 46 as compared to 37 for Q8. The larger

sphere size of Qg enables an FCP to re-schedule a backup

task at a more suitable processor.

5.2 Impact of System Parameters

Two other important factor that can have a significant
impact on normal load distribution as well as load re-distri-
bution are the system load and task migration time. A fault–
tolerant strategy should be able to perform equally well if
these factors happen to change. The results presented in this
section examine the effects of these factor nnder failure and
non–failure conditions. The missing probability is obtained
by varyingd on each processor from 0.3 to 0.8, for both net-
works. Recall that throughout this studypE is kept as 1 and

therefOre the SyStemload (Q = ~1/’tE)corresponds tO~ . D

and PC have been selected to be 2 and 20, respectively. For

failures, three failure conditions corresponding to 12,24

and 48 faulty processors have been considered Q8 while

these numbers are doubled for the Q9 network. The dead-

line missing probabilities am shown in Figure 7 andFigure 8
for Q* and Qg, respectively.

The deadlinemissing probability, obviously, depends on
the system load under both failure or non–failure condL
tions. The important point to notice from these curves is that
under any load condhions the performance degradation due
to failures does not strictly dependent on the system load.
This can be observed from Figure 7 and Figure 8 where the
deadline missing probabdities are shown to increase slight-
ly if load is varied from 0.3 to 0.8 for both QS and Q~. For

Q,, the deadline missing probabdity increases with a no-

ticeable difference only when load is equal to 0.8. For Q9,
this difference is even smaller.

The results presented next have been obtained by con-

sidering different task migration costs. For these result, A

has been varied from 4 to 40 tasks/unit-time implying a
slower to faster communication network. The values of D
and 1 have been kept as 2.0 and 0.8, respectively, and the

average number of faulty processors has been selected to be
the same as shown in earlierinFigure9 and 10. The deadline
missing probabilities for Qs and Qg are illustrated in Figure

9 andFigure 10, respectively. In theno-failurecase, the task
migration time affects the processor to processor task mi-
gration for normal load balancing. On the other hand, in the
failure case, the migration overhead is incurred when an
FCP re-schedules a task within its sphere. Therefore, in
both cases, the successful completion of a task before its
deadline is affected if this overhead is high. From Figure 9
and Figure 10, it can be noticed that, under normal opera-
tion, the performance of both networks is almost identical.
The increase in deadline missing probability is negligible,
except when the faulty processors are equal to40. Neverthe-
less, the proposed strategy maintains this slight degradation

in performance over the complete range of PC.

5.3 Robustness of Fault-Tolerance

So far the results presented have shown that the pro-
posed stmtegy is able to adaptive to system parameters such
asD, J andpc. The degradation in the overall performance
of deadline missing probability, as compared to that of
fault–free environment, is due to achieving our main objec-
tive of saving those tasks which would have been lost if there
were no fault-tolerance and load re-distribution. The next
question is how does a re-scheduled task perform in terms
of meeting its deadline. Note that, we do not consider task
level roll back and recovery, and we assume that a backup
task starts it execution from the beginning. Therefore a
backup task starts all over again even if it was under process-
ing at the time its original processors crashed. However, the
task retains its original deadline and is required to finish its
execution before that time. The obvious question is how
good is the strategy in achieving these objectives. The use-
fulness of such afault–tolemnt strategy, therefore, shouldbe
judged by observing its ability to minimize the loss of tasks

157

and its efficiency in quickly re–scheduling backup tasks.
For this purpose, we have observed from simulation the
deadline meeting probability of a re-scheduled task and the
probability of a task being totally lost.

The success probability of re-scheduled tasks should be
distinguished from theoverallprobability of all the tasks (as
shown in previous sections) since this probability has been
obtained by observing only there-scheduled tasks from the
backup queue. Figure 11 andFignre 12 show theseprobabil-
ities for the two networks under different levels of failures.
The load per processor is set to be 0.8 and task migration
rate is equal to 20. We observe from these figures that the
success probability of re–scheduled tasks is affected by D
and not by the level of failure. For the Q8 network, this

probability is about 0.4 when D is 1.0. The probability be-
comes greater than 0.6 when D is 4, and is even higher for
Q,. This reasonably high success probability is due to the

fact that it is very likely that there are idle or lightly loaded
processors in the system. The load re-distribution mecha-
nism enables an FCP to re-allocate backup on the idle pro-

cessors within its sphere. Since the FCPS are spread across
the whole system and the backup queues of the failing pro-
cessors are spread across those FCPS, the backup tasks are
re–scheduled to idle or lightly loaded processors even when
those processors are graphically located at different places
in the network topolog y.

As can be noticed from the proposed partitioning
scheme (section 2), the number of FCPs aR always of O(log

i
■ Failed PEs = 0 ❑ Failed PEs = 24
❑Failed PEs = 12 ❑ FaiM PEs = 48 I■ Fail~ pEs = O ❑ Failed PEs = 24

❑Failed PEs = 12 ❑ Failed PEs = 48

i
12

.%
z 0.02

2

0.01

0
48

1
40

1
36

Ii!
8 12 16 20 24 28 32 36 40

Tad Migration Rate Task Migration Rate

Figure 9: The effects of task migration and fault rate Figure 10 The effects of task migration and fault rate
on-the deadline missing probabih~~ for the Qg network.on the deadline missing probability for the Qg network.

■ D=l.O ❑D=3.O

❑ D=2.O ❑D=4.O

1 I s

■ D=l.O ❑D=3.O

❑ D=2,0 ❑D=4.O

1 I I

0.9

0.8

~ 0.7
*
$ 0.6
a
% 0.5
&
$ 0.4
3g 0.3

m 0.2

0.1

0

0.9

i

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
48 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40

Faulty ProcessorsFaulty Processors

Figure 11: The success probability of re–scheduled
tasks for the Qsnetwork

Figure 12: The success probability of re-scheduled
tasks for the Qgnetwork

758

Table III Percentage of task which still meet
their deadlines after re-schedulhw

I 48 I 3.!38 x 10-3 I 7.73 x 10-3 I

N). Therefore, as the network size increases, the sphere size
per FCP increases. Due to this reason, Qg is shown to per-

form consistently better than Qg. Accordingly, the pro-

posed scheme is expected to perform better for larger sys-
tems.

Table III provides the probability of a task being lost
which could not be exetutcd at all due to the failures of the
processors well as the primary and the secondary FCPs. In
other words, the entries in the table provide the probability
of task being lost altogether. Generally, this probability de-

pends on two factors. FirsC the level of redundancy which is
two in this case and the number of FCPS among which the
tasks are distributed in a round–robin fashion. As can be
noticed, the values shown in Table III are considerably low.

6 Conclusions

In this paper, we have proposed a new fault–tolerant ap-
proach for large-scale hypercube multicomputer systems.
The use of Hadamard matrix results in an efficient strategy
for identifying fault control processors and for partitioning

these systems for load re-distribution. The central proces-
sors of the spheres, called fault-control processors, provide
a two-level task redundancy and efficiently re-distribute
the load of failed processors within their spheres. For failure
and repair processes, we have assumed a realistic failure-
repair system environment. In addition, we have taken into
account the load submitted to processors while they are un-
der repair. The performance of the proposed strategy has
been evaluated for both failure and no-failure cases. The
degradation in the overall performance is due to achieving
the objective of saving those tasks which would have lost if
there were no fault–tolerance and load re-distribution sup-
port. It is shown that, using the proposed strategy, theproba-
bility of meeting deadlines by re–scheduled tasks is reason-
ably high. The probability of a task being lost due to multi-
ple failures has also been shown to be negligible.

References

[1]

[2]

1. Ahmad and A. Ghafbor, “A Semi-Distributed Dis-
tributed task Allocation Strategy for large Hypercube
Supercomputers” Proc. of Supercomputing ’90, New
York, Nov. 1990, pp 898-907.

Y. Chang and K. G. Shin, “Load Sharing in Hypercube
Multicomputers in the Presence of Node Failures,” in
Proc. of Fi~hDistributedMemo~ Computing Confer-
ence, VOLH, April 1990, pp. pp. 1465–1474.

[3] T. C. K. Chou andJ. A. Abraham, “LoadReDistribution
Under Failure in Distributed Systems”, lEEE Trans.
on Computers, vol. C–32, no. 9, Sept. 1983, pp.
799-808.

[41 C. R. Das. J. T. Kreulen andM. J. Thazhuthaveetil. “De-. .

[5]

[6]

[7]

[8]

[9]

Wndabllity Modeling for Multiprocessors”,” IEEE
Computer, Oct. 1990, pp. 7–19.

M. Hall Jr., Combinatorial Theory, 2ndEd., John Wiley
and Sons, New York, 1986.1

J. F. Kurose and R. Chipalkatti, “Load Sharing in Soft
Real-Time Distributed Computer Systems,” IEEE
Trans. on Computers, vol. C-36, no. 8, August 1987,
pp. 993-1OOO.

D. W. Leinbaugh and M. Yamini, “Guaranteed Re-
sponse Times in a DMributed Hard-Real-Time Envi-
ronment,” IEEE Trans. on Sojtware Eng., vol. SE-12,
DeC. 1986, pp. 1139-1144.

A.M. McLaughlin, “The complexity of Computing the
Covering Radius of a Code,” IEEE Trans. on Informa-
tion Theory, CO1IT–30, Nov., 1984, pp. 800-804.

F. J, MacWilliams and N. J. A. Sloane, The Theory of
Error–Correcting Codes, vols. Z and II, New York:
North Holland, 1977.

[10] J. K. Muppala, S. P. Woolet andK. S. Trivedi, “Real-
Time–Systems Performance in the Presence of Fail-
ures, ” IEEE Computer, May 1991, pp. 3747.

[11] B. A.A. Nazief, “Empirical Study of Load Distribution
Strategies on Multicomputers, “ Ph.D Dkertation,
University of Illinois at Urbana-Champaign, Septem-
ber 1991.

[12] X. Qian and Qing Yang, “Load Balancing on Geneml-
izedHypercubeand Mesh Multiprocessors withLAL”

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Proc. 6fThe 11–th Int’1 con. o~Distributed Comput-
ing systems, May 1991, pp. 402409.

K. Ramamritham, J. A. Stankovic and W. Zhao, “Dis-
tributed Scheduling of Tasks with Deadlines and Re-
source Requirements:’ IEEE Trans. on Computers,
vol. 38, no. 8, Aug. 1989, pp. 1110-1123.

K. G. Shin and Y.-C. Chang, “Load Sharing undistrib-
uted Real-Time Systems with State-Change Broad-
casts,” IEEE Trans. on Computers, vol. 38, no. 8, Aug.
1989, pp. 1124-1142.

N. G. Shivrati and M. Singhal, “A Transfer Policy for
Global Scheduling Algorithms to Schedule tasks with
Deadlines, ” in Proc. of 11-th Znf’1. ConJ on Distrib-
uted Computing System.r, May 1991, pp. 248-255.

P.J. Skerrett, “Futu~ Computers: The Teraflops Race,
“Popular Science, March 1992.

J. A. Stankovic, “Decentralized Decision Making for
Task Allocation in a Hard Real-Tne System:’ IEEE
Trans. on Computers, vol. 38, no. 3, March 1989, pp.
341-355.

L. J. Stochmeyer and V. V. Vazirani, “NP-Complete-
ness of some Generalization of the Maximum Match-
ing problems:’ Znforriuztion Proc. Letters, vol. 15,
1982, pp 14-19.

Thinking Machkes, CM5, Technical Summary, Octo-
ber 1991.

759

